首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1537篇
  免费   103篇
  国内免费   207篇
化学   1586篇
晶体学   7篇
力学   58篇
综合类   18篇
数学   30篇
物理学   148篇
  2023年   7篇
  2022年   9篇
  2021年   32篇
  2020年   57篇
  2019年   52篇
  2018年   37篇
  2017年   63篇
  2016年   71篇
  2015年   40篇
  2014年   71篇
  2013年   146篇
  2012年   63篇
  2011年   60篇
  2010年   52篇
  2009年   71篇
  2008年   80篇
  2007年   98篇
  2006年   92篇
  2005年   79篇
  2004年   81篇
  2003年   76篇
  2002年   67篇
  2001年   59篇
  2000年   76篇
  1999年   58篇
  1998年   48篇
  1997年   45篇
  1996年   19篇
  1995年   29篇
  1994年   22篇
  1993年   29篇
  1992年   19篇
  1991年   14篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
排序方式: 共有1847条查询结果,搜索用时 46 毫秒
1.
The implementation of covalent adaptable networks (CANs) in general resin system is becoming attractive. In this work, we propose a simple post-curing strategy based on the core-shell structured acrylate latex for the achievement on both the improved general performance and the CANs characteristics in latex films. The building to the CANs was relied on the introduction of 4,4′-diaminophenyl disulfide as the curing agent, which cured the acetoacetoxy decorated shell polymer through the ketoamine reaction. The metathesis reaction of aromatic disulfides in the crosslinking segments enabled the thermally induced dynamic behavior of the network as revealed in the stress relaxation tests by comparison with other diamine crosslinking agents without the incorporation of disulfide. The synergism of the dynamic crosslinking of the shell polymer and static crosslinking in the core polymer contributed to the improved mechanical strength (15 MPa, strain% = 250%) and the suppressed water adsorption (~1% in 24 h of soaking) of the latex film, which exhibited above 90% of recovery in both strength and strain from a cut-off film damage within 1 h at 80°C. Moreover, the cured latex film could be recycled, and 75% of the mechanical performance was regained after three fragmentation-hot-pressing cycles. These, in addition with the feasible and environmental friendly characteristics, suggest a sustainable paradigm toward the smart thermosetting latex polymers.  相似文献   
2.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
3.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
4.
By combining frontal polymerization and radical‐induced cationic polymerization, it was possible to cure thick samples of an epoxy monomer bleached by UV light. The effect of the relative amounts of cationic photoinitiator and radical initiator was thoroughly investigated and was related to the front's velocity and its maximum temperature. The materials obtained were characterized by quantitative conversion also in the deeper layers, not reached by UV light. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2066–2072, 2004  相似文献   
5.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   
6.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   
7.
This article presents a new methodology for the quantitative determination of the progress of the curing reaction of a thermosetting resin, using the results of electrical impedance spectroscopy. The method is an extension of the use of the imaginary impedance maximum as a reaction progress indicator and is based on the demonstration of a close correlation between the reaction rate, as measured by conventional differential scanning calorimetry, and the rate of change of the value of the imaginary impedance spectrum maximum. Tests on a commercial aerospace epoxy resin under both isothermal and dynamic heating conditions with calorimetry and impedance spectroscopy have demonstrated the validity of the method and set the accuracy limits involved. This technique can be used as a real-time online control tool for thermoset composite manufacturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 146–154, 2004  相似文献   
8.
The fracture behavior of a core-shell rubber (CSR) modified epoxy is investigated using both fracture mechanics and microscopy tools. The CSR-modified epoxy is found to be toughened via numerous line-array cavitations of the CSR particles, followed by plastic flow of the epoxy matrix. The toughening effect via the above craze-like damage process is found to be as effective as that of the well-known widespread rubber cavitation/matrix shear yielding mechanisms. The conditions for triggering the craze-like damage appear to be both stress state and rubber concentration dependent. The type of rubber tougheners utilized also plays a critical role in triggering this rather unusual craze-like damage in epoxy systems. © 1993 John Wiley & Sons, Inc.  相似文献   
9.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   
10.
The controlled reaction of equimolar quantities of maleic anhydride and glycidol in dimethoxyethane gives soluble polyesters with one hydroxyl group in each repeating unit. The reaction proceeds with stepwise ring opening of the components and gives highly viscous clear solutions in relatively short periods. In the first step, monomaleate ester formation takes place around 80 °C. The ring opening of the oxirane group is the second step, and it occurs at 120 °C. The overall reaction is the formation of soluble polyesters with moderate molecular weights (6000–18,000), without the elimination of water. The soluble polyesters can be crosslinked tightly by direct heating at 190 °C without additional vinyl monomer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2549–2555, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号